Streams

About

Java Streams, introduced in Java 8, revolutionized how developers process collections and sequences of data. They provide a modern, functional approach to handling data manipulation tasks, making code more concise, readable, and expressive.

What Are Streams?

Java Streams API is a powerful abstraction introduced in Java 8 that allows functional-style operations on collections, arrays, or I/O resources. It enables declarative and parallel processing of data, making it easier to work with large datasets efficiently.

A Stream is a sequence of elements that supports various operations such as filtering, mapping, and reducing, without modifying the original data source.

Example: Traditional Loop vs Stream Processing

Without Streams (Imperative Approach)

List<String> names = List.of("Alice", "Bob", "Charlie", "David");
List<String> filteredNames = new ArrayList<>();
for (String name : names) {
    if (name.startsWith("A")) {
        filteredNames.add(name);
    }
}
System.out.println(filteredNames); // [Alice]

With Streams (Declarative Approach)

List<String> names = List.of("Alice", "Bob", "Charlie", "David");
List<String> filteredNames = names.stream()
                                  .filter(name -> name.startsWith("A"))
                                  .collect(Collectors.toList());
System.out.println(filteredNames); // [Alice]

Why use Streams?

Streams offer several advantages over traditional iterative approaches (e.g., for loops):

  1. Readability: Streams allow us to write code in a declarative style, focusing on what needs to be done rather than how to do it.

  2. Conciseness: Streams reduce boilerplate code, making programs shorter and easier to maintain.

  3. Functional Programming: Streams support functional programming constructs like lambda expressions and method references, enabling cleaner and more modular code.

  4. Parallel Processing: Streams can easily be parallelized using the parallelStream() method, allowing efficient utilization of multi-core processors for large datasets.

  5. Lazy Evaluation: Intermediate operations (e.g., filter, map) are only executed when a terminal operation (e.g., collect, forEach) is invoked. This improves performance by avoiding unnecessary computations.

  6. Immutability: Streams do not modify the source data, promoting immutability and reducing side effects.

Key Characteristics of Streams

1. Streams Do Not Store Data

Streams operate on a source (Collection, Array, or I/O resource) and process data without storing it.

Stream<String> stream = List.of("One", "Two", "Three").stream();

2. Streams Are Functional in Nature

Streams allow functional transformations using methods like map(), filter(), and reduce(), without modifying the original data.

List<Integer> numbers = List.of(1, 2, 3, 4, 5);
List<Integer> squaredNumbers = numbers.stream()
                                      .map(n -> n * n)
                                      .collect(Collectors.toList());

3. Streams Are Lazy (Lazy Evaluation)

Intermediate operations (filter(), map()) are executed only when a terminal operation (collect(), forEach()) is called.

Stream<Integer> stream = List.of(1, 2, 3, 4, 5).stream()
                                               .filter(n -> {
                                                   System.out.println("Filtering: " + n);
                                                   return n > 2;
                                               });
System.out.println("No execution yet!");
stream.forEach(System.out::println);  // Now filtering starts

4. Streams Support Parallel Execution

Streams support parallel execution via .parallelStream(), allowing tasks to be executed concurrently.

List<Integer> numbers = List.of(1, 2, 3, 4, 5);
numbers.parallelStream().forEach(System.out::println);

5. Streams Support Pipeline Processing

Streams allow chained operations where the output of one method is passed as input to the next.

List<String> names = List.of("John", "Jane", "Jack");
long count = names.stream()
                  .map(String::toUpperCase)
                  .filter(name -> name.startsWith("J"))
                  .count();
System.out.println(count);

6. Streams Have Two Types of Operations

  • Intermediate Operations (Return a Stream, lazy execution)

    • filter(), map(), flatMap(), distinct(), sorted(), peek()

  • Terminal Operations (Trigger execution, consume the Stream)

    • collect(), count(), forEach(), reduce(), min(), max()

Memory Usage

Memory usage by Java Streams is an important consideration, especially when dealing with large datasets or performance-critical applications. Streams are designed to be efficient, but their memory usage depends on several factors, including the data source, intermediate operations, and terminal operations.

Overview

Streams themselves do not store data; they operate on a data source (e.g., a collection, array, or I/O channel). However, memory is used in the following ways:

Data Source: The memory usage of the data source (e.g., a collection or array) remains unchanged. Streams do not copy the data but instead provide a view or pipeline to process it.

Intermediate Operations: Intermediate operations (e.g., filter, map, sorted) create new streams but do not immediately process the data. They are lazily evaluated, meaning they only define the pipeline and do not consume memory until a terminal operation is invoked.

Terminal Operations: Terminal operations (e.g., collect, forEach, reduce) trigger the processing of the stream and may consume memory depending on the operation:

  • Operations like collect may store results in a new collection.

  • Operations like reduce or forEach process elements one at a time and typically use minimal additional memory.

Parallel Streams: Parallel streams divide the data into multiple chunks for concurrent processing, which may increase memory usage due to the overhead of managing multiple threads and intermediate results.

Key Factors Affecting Memory Usage in Streams

1️. Lazy Evaluation (Efficient Memory Usage)

Streams process elements only when needed, reducing memory consumption compared to eager execution.

Example: Lazy Execution (Efficient)

// Memory Efficient → Elements are processed one by one, reducing memory load.
Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5)
                               .map(n -> {
                                   System.out.println("Processing: " + n);
                                   return n * 2;
                               });
System.out.println("No processing yet!");
stream.forEach(System.out::println);

Example: Eager Execution (Memory-Intensive)

//  Higher Memory Usage → Stores the transformed list in memory.
List<Integer> list = Stream.of(1, 2, 3, 4, 5)
                           .map(n -> n * 2)
                           .collect(Collectors.toList()); // Stores all elements in memory

2️. Intermediate Operations and Memory Impact

Intermediate operations (map(), filter(), distinct(), sorted()) do not store elements but may require extra memory under certain conditions.

Operations with Minimal Memory Usage

map(), filter(), peek() → Process elements one by one, no additional memory overhead.

List<String> names = List.of("Alice", "Bob", "Charlie", "David");
long count = names.stream()
                  .filter(name -> name.length() > 3)
                  .count(); // Uses constant memory O(1)

Operations That Require More Memory

sorted(), distinct(), flatMap() → Require extra memory for processing.

List<Integer> numbers = List.of(5, 3, 1, 4, 2);
// Higher Memory Usage → Sorting requires holding all elements in memory to perform the sort operation.
List<Integer> sortedList = numbers.stream()
                                  .sorted() // Stores all elements in memory before sorting
                                  .collect(Collectors.toList());

3️. Parallel Streams and Memory Consumption

Parallel Streams split data into multiple threads for faster execution but can increase memory consumption due to:

  • Thread creation overhead

  • Higher temporary memory usage for merging results

Example: Memory Overhead in Parallel Streams

List<Integer> numbers = IntStream.range(1, 1000000)
                                 .parallel()
                                 .boxed()
                                 .collect(Collectors.toList());

4️. Collecting Data (collect() & Memory Allocation)

Using collect() stores all stream elements in memory, which can be problematic for large datasets.

Example: Collecting Large Data

// High Memory Usage → Avoid collecting when possible.
List<Integer> bigList = IntStream.range(1, 1000000)
                                 .boxed()
                                 .collect(Collectors.toList()); // Stores 1M elements

Better Approach: Use forEach() Instead

// Lower Memory Usage → No storage of elements.
IntStream.range(1, 1000000)
         .forEach(System.out::println); // Processes one element at a time

5️. Large Data Streams (Handling Gigabytes of Data)

For large datasets (e.g., processing files, databases), avoid materializing the entire dataset into memory.

1. Using Stream.generate() (Infinite Streams)

Streams can generate infinite sequences, consuming memory if not terminated.

// Memory Leak Risk → Use limit() to control size.
Stream<Double> infiniteStream = Stream.generate(Math::random); // Infinite stream

Fix: Use limit() to Avoid Memory Overload

// Lower Memory Usage → Generates a finite dataset.
List<Double> limitedList = Stream.generate(Math::random)
                                 .limit(10) // Limits to 10 elements
                                 .collect(Collectors.toList());

2. Streaming Large Files with BufferedReader

Reading large files into a list causes high memory usage.

// Problem: Huge files cause OutOfMemoryError.
List<String> lines = Files.readAllLines(Path.of("largefile.txt")); // Loads full file in memory

Solution: Use BufferedReader.lines()

// Memory Efficient → Reads one line at a time.
Stream<String> fileStream = Files.lines(Path.of("largefile.txt")); // Processes line by line
fileStream.forEach(System.out::println);

6. Memory Allocation When Creating Multiple Streams

Each time we create a new Stream, memory is allocated for:

  • Stream object itself (small overhead)

  • Pipeline of operations (intermediate and terminal operations)

  • Data source reference (list, array, file, etc.)

List<Integer> numbers = List.of(1, 2, 3, 4, 5);

// Creating multiple streams
Stream<Integer> stream1 = numbers.stream().map(n -> n * 2);
Stream<Integer> stream2 = numbers.stream().filter(n -> n % 2 == 0);
Stream<Integer> stream3 = numbers.stream().sorted();

Stream Operations Overview

Java Streams API consists of Intermediate and Terminal operations that work together to process data efficiently. Understanding these operations and the Stream Pipeline is essential for writing clean, functional, and performant code.

1. What Are Intermediate and Terminal Operations?

Stream operations are categorized into two types:

  1. Intermediate Operations – Transform a stream and return a new Stream. They are lazy (executed only when a terminal operation is called).

  2. Terminal Operations – Consume the stream and produce a result (such as a collection, count, or boolean value). Terminal operations trigger execution of intermediate operations.

Intermediate Operations (Lazy and Return a Stream)

These operations do not process elements immediately; instead, they build up a pipeline and execute only when a terminal operation is encountered.

Method

Description

filter(Predicate<T>)

Filters elements based on a condition.

map(Function<T, R>)

Transforms each element in the stream.

flatMap(Function<T, Stream<R>>)

Flattens multiple nested streams into a single stream.

distinct()

Removes duplicate elements.

sorted(Comparator<T>)

Sorts elements in natural or custom order.

peek(Consumer<T>)

Debugging tool; applies an action to each element.

limit(n)

Limits the number of elements in the stream.

skip(n)

Skips the first n elements.

Terminal Operations (Trigger Execution and Produce a Result)

Once a terminal operation is called, the stream pipeline is executed in one pass and cannot be reused.

Method

Description

forEach(Consumer<T>)

Iterates over each element.

collect(Collector<T, A, R>)

Converts stream elements into a collection (List, Set, Map).

count()

Returns the total number of elements.

reduce(BinaryOperator<T>)

Aggregates elements into a single result (sum, max, etc.).

min(Comparator<T>)

Finds the minimum element.

max(Comparator<T>)

Finds the maximum element.

anyMatch(Predicate<T>)

Checks if at least one element matches the condition.

allMatch(Predicate<T>)

Checks if all elements match the condition.

noneMatch(Predicate<T>)

Checks if no elements match the condition.

toArray()

Converts a stream into an array.

2. Understanding the Stream Pipeline

A Stream Pipeline consists of three stages:

1. Data Source

A stream is created from a data source like a Collection, Array, or I/O Channel.

List<String> names = List.of("Alice", "Bob", "Charlie", "David");
Stream<String> stream = names.stream();

2. Intermediate Operations (Lazy)

Intermediate operations transform the data but do not execute immediately.

Stream<String> filteredStream = stream.filter(name -> name.startsWith("A"));
Stream<String> mappedStream = filteredStream.map(String::toUpperCase);

3. Terminal Operation (Triggers Execution)

Once a terminal operation is called, the pipeline is executed in a single pass.

List<String> result = mappedStream.collect(Collectors.toList());
System.out.println(result);

Now execution happens! The output will be:

[Alice]

Complete Stream Pipeline Example

List<String> names = List.of("Alice", "Bob", "Charlie", "David");

List<String> result = names.stream()
                           .filter(name -> name.startsWith("A"))   // Intermediate
                           .map(String::toUpperCase)               // Intermediate
                           .sorted()                               // Intermediate
                           .collect(Collectors.toList());         // Terminal

System.out.println(result);  // Output: [ALICE]

Pipeline Execution Order (Optimization)

Streams process data in one pass, applying operations only to elements that reach the terminal operation.

// Example
List<String> names = List.of("Alice", "Bob", "Charlie", "David");
names.stream()
     .filter(name -> {
         System.out.println("Filtering: " + name);
         return name.startsWith("A");
     })
     .map(name -> {
         System.out.println("Mapping: " + name);
         return name.toUpperCase();
     })
     .collect(Collectors.toList());
 // Notice that only "Alice" reaches map(). The rest are skipped after filter().
 // Output
Filtering: Alice
Mapping: Alice
Filtering: Bob
Filtering: Charlie
Filtering: David

Creating Streams in Java

Java provides multiple ways to create streams from different data sources, such as Collections, Arrays, and Generators.

1. Creating Streams from Collections

Java Collections (like List, Set) have a built-in stream() method that allows easy stream creation.

// Example: Creating a Stream from a List
List<String> names = List.of("Alice", "Bob", "Charlie", "David");
Stream<String> nameStream = names.stream();
nameStream.forEach(System.out::println);

// Output
// Alice  
// Bob  
// Charlie  
// David 

Parallel Stream from a Collection

If we want to process elements in parallel, use parallelStream(). Parallel streams are useful for large datasets but can have overhead for small ones.

Stream<String> parallelStream = names.parallelStream();

2. Creating Streams from Arrays

We can create a stream from an array using Arrays.stream() or Stream.of().

// Example: Creating a Stream from an Array
String[] colors = {"Red", "Green", "Blue"};
Stream<String> colorStream = Arrays.stream(colors);
colorStream.forEach(System.out::println);

// Red  
// Green  
// Blue 

Stream from a Primitive Array

Use IntStream, LongStream, or DoubleStream for primitives:

int[] numbers = {1, 2, 3, 4, 5};
IntStream intStream = Arrays.stream(numbers);
intStream.forEach(System.out::print);
// 12345

3. Using Stream.of(), Stream.generate(), and Stream.iterate()

Stream.of() – Creating Streams from Values

The Stream.of() method can be used to create a stream from multiple values.

Stream<String> stream = Stream.of("Java", "Python", "C++");
stream.forEach(System.out::println);
// Java  
// Python  
// C++

Stream.generate() – Infinite Stream with Supplier

Stream.generate() produces an infinite stream using a Supplier<T>.

// limit(n) is necessary to prevent infinite execution.
Stream<Double> randomStream = Stream.generate(Math::random).limit(5);
randomStream.forEach(System.out::println);

// Output: (Random values each time)
// 0.78965  
// 0.23451  
// 0.98732  
// 0.45678  
// 0.12345 

Stream.iterate() – Infinite Stream with Iteration

Stream.iterate() generates an infinite stream using a function and an initial value.

Stream<Integer> evenNumbers = Stream.iterate(2, n -> n + 2).limit(5);
evenNumbers.forEach(System.out::println);

// 2  
// 4  
// 6  
// 8  
// 10  

🔹 Java 9+ introduced a predicate-based Stream.iterate()

Stream.iterate(2, n -> n < 20, n -> n * 2).forEach(System.out::println);
// 2  
// 4  
// 8  
// 16  

Intermediate Operations in Java Streams

Intermediate operations transform a stream and return another stream. They are lazy—executing only when a terminal operation is called.

1. Filtering with filter()

Used to retain elements that satisfy a condition.

List<Integer> numbers = List.of(10, 15, 20, 25, 30);
Stream<Integer> filteredStream = numbers.stream().filter(n -> n > 15);
filteredStream.forEach(System.out::println);

/*
Output:
20
25
30
*/

2. Transforming with map()

Used to transform each element in a stream.

List<String> names = List.of("john", "jane", "doe");
Stream<String> upperCaseNames = names.stream().map(String::toUpperCase);
upperCaseNames.forEach(System.out::println);

/*
Output:
JOHN
JANE
DOE
*/

3. Flattening with flatMap()

Used when elements themselves contain collections—it flattens them into a single stream.

List<List<String>> listOfLists = List.of(
    List.of("A", "B"),
    List.of("C", "D")
);
Stream<String> flattenedStream = listOfLists.stream().flatMap(List::stream);
flattenedStream.forEach(System.out::println);

/*
Output:
A
B
C
D
*/

4. Removing Duplicates with distinct()

Removes duplicate elements based on .equals().

List<Integer> nums = List.of(1, 2, 2, 3, 3, 4, 5, 5);
Stream<Integer> uniqueStream = nums.stream().distinct();
uniqueStream.forEach(System.out::print);

/*
Output:
12345
*/

5. Sorting Elements with sorted()

Sorts elements naturally or using a custom comparator.

List<String> words = List.of("banana", "apple", "cherry");
Stream<String> sortedStream = words.stream().sorted();
sortedStream.forEach(System.out::println);

/*
Output:
apple
banana
cherry
*/

Custom Sorting

Stream<String> reverseSortedStream = words.stream().sorted(Comparator.reverseOrder());
reverseSortedStream.forEach(System.out::println);

/*
Output:
cherry
banana
apple
*/

6. Debugging with peek()

Useful for debugging—allows inspecting elements without modifying them.

List<Integer> values = List.of(1, 2, 3, 4);
Stream<Integer> debugStream = values.stream()
    .peek(n -> System.out.println("Before filter: " + n))
    .filter(n -> n % 2 == 0)
    .peek(n -> System.out.println("After filter: " + n));

debugStream.forEach(System.out::println);

/*
Output:
Before filter: 1
Before filter: 2
After filter: 2
2
Before filter: 3
Before filter: 4
After filter: 4
4
*/

Terminal Operations in Java Streams

Terminal operations consume the stream and produce a result (e.g., a collection, a value, or a side effect). After a terminal operation, the stream cannot be reused.

1. Iterating with forEach()

Executes an action for each element in the stream.

List<String> names = List.of("Alice", "Bob", "Charlie");
names.stream().forEach(System.out::println);

/*
Output:
Alice
Bob
Charlie
*/

2. Collecting with collect()

Converts the stream into a collection (List, Set, Map) or another structure.

List<String> names = List.of("Alice", "Bob", "Charlie");
List<String> upperCaseNames = names.stream()
    .map(String::toUpperCase)
    .collect(Collectors.toList());
System.out.println(upperCaseNames);
/*
Output:
[ALICE, BOB, CHARLIE]
*/

Set<String> uniqueNames = names.stream().collect(Collectors.toSet());
System.out.println(uniqueNames);
/*
Output:
[Alice, Bob, Charlie]
(Order may vary since Set does not guarantee order)
*/

Set<String> sortedNames = names.stream()
    .collect(Collectors.toCollection(TreeSet::new));
System.out.println(sortedNames);
/*
Output:
[Alice, Bob, Charlie]
(Natural sorting applied)
*/

Map<String, Integer> nameLengthMap = names.stream()
    .collect(Collectors.toMap(name -> name, String::length));
System.out.println(nameLengthMap);
/*
Output:
{Alice=5, Bob=3, Charlie=7}
*/

// If duplicate keys exist, we must provide a merge function to handle collisions.
List<String> words = List.of("apple", "banana", "apple", "orange");
Map<String, Integer> wordCount = words.stream()
    .collect(Collectors.toMap(
        word -> word,  // Key: Word itself
        word -> 1,  // Value: Initial count
        Integer::sum // Merge function: Sum duplicate values
    ));
System.out.println(wordCount);
/*
Output:
{apple=2, banana=1, orange=1}
*/

Grouping elements

The Collectors.groupingBy() method groups elements of a stream based on a classifier function and returns a Map<K, List<T>>, where:

  • K → The grouping key (e.g., length of a string).

  • List<T> → The list of elements sharing the same key.

Basic Syntax

Collectors.groupingBy(classifier)

classifier → A function that determines the grouping key.

Syntax with Downstream Collector

Collectors.groupingBy(classifier, downstreamCollector)

downstreamCollector → Used for further operations like counting, mapping, or reducing.

Syntax with Custom Map Type

Collectors.groupingBy(classifier, mapFactory, downstreamCollector)

mapFactory → Specifies the type of Map<K, List<T>> (e.g., TreeMap instead of HashMap).

Map<Integer, List<String>> groupedByLength = names.stream()
    .collect(Collectors.groupingBy(String::length));
System.out.println(groupedByLength);
/*
Output:
{3=[Bob], 5=[Alice], 7=[Charlie]}
*/

List<Integer> numbers = List.of(1, 2, 3, 4, 5, 6);
Map<String, List<Integer>> groupedByEvenOdd = numbers.stream()
    .collect(Collectors.groupingBy(n -> n % 2 == 0 ? "Even" : "Odd"));
System.out.println(groupedByEvenOdd);
/*
Output:
{Odd=[1, 3, 5], Even=[2, 4, 6]}
*/

// If we want to count how many elements fall into each group
Map<Integer, Long> lengthCounts = names.stream()
    .collect(Collectors.groupingBy(String::length, Collectors.counting()));
System.out.println(lengthCounts);
/*
Output:
{3=1, 5=1, 7=1}
*/

3. Counting with count()

Counts the number of elements in a stream.

List<Integer> numbers = List.of(10, 20, 30, 40);
long count = numbers.stream().count();
System.out.println(count);
/*
Output:
4
*/

4. Finding Min/Max with min() and max()

Finds the smallest or largest element based on a comparator.

List<Integer> numbers = List.of(10, 20, 30, 40);
Optional<Integer> minValue = numbers.stream().min(Integer::compareTo);
Optional<Integer> maxValue = numbers.stream().max(Integer::compareTo);

System.out.println("Min: " + minValue.orElse(-1));
System.out.println("Max: " + maxValue.orElse(-1));

/*
Output:
Min: 10
Max: 40
*/

5. Reducing with reduce()

It is used to combine elements of a stream into a single result. It performs reduction using an accumulator function, optionally with an identity value and/or a combiner function.

Syntax of reduce()

1. Without Identity (Returns Optional<T>)

Optional<T> reduce(BinaryOperator<T> accumulator)
  • Used when no default value is needed.

  • Returns an Optional<T> because the stream could be empty.


2. With Identity (Returns T)

T reduce(T identity, BinaryOperator<T> accumulator)
  • Identity → A default value used when the stream is empty.

  • Accumulator → A function to combine elements.


3. With Identity and Combiner (For Parallel Streams)

<U> U reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner)
  • Accumulator → Processes each element.

  • Combiner → Merges results (used in parallel streams).

Sum of all elements

List<Integer> numbers = List.of(1, 2, 3, 4, 5);
int sum = numbers.stream().reduce(0, Integer::sum);
System.out.println(sum);

/*
Output:
15
*/

Concatenating Strings

List<String> words = List.of("Java", "Streams", "Example");
String sentence = words.stream().reduce("", (a, b) -> a + " " + b);
System.out.println(sentence.trim());

/*
Output:
Java Streams Example
*/

6. Matching Elements with anyMatch(), allMatch(), noneMatch()

Used to test conditions on elements.

anyMatch() – At least one element matches

List<String> names = List.of("Alice", "Bob", "Charlie");
boolean hasShortName = names.stream().anyMatch(name -> name.length() == 3);
System.out.println(hasShortName);

/*
Output:
true
*/

allMatch() – All elements match

boolean allStartWithA = names.stream().allMatch(name -> name.startsWith("A"));
System.out.println(allStartWithA);

/*
Output:
false
*/

noneMatch() – No elements match

boolean noneStartWithZ = names.stream().noneMatch(name -> name.startsWith("Z"));
System.out.println(noneStartWithZ);

/*
Output:
true
*/

Parallel Streams in Java

Parallel Streams in Java allow for concurrent processing of data by utilizing multiple CPU cores. This enables faster execution for large datasets by dividing the workload across threads in the Fork/Join framework.

1. What are Parallel Streams?

A parallel stream processes elements simultaneously in multiple threads rather than sequentially. It splits the data into smaller chunks and processes them in parallel using Java's ForkJoinPool.

How to Create a Parallel Stream?

List<Integer> numbers = List.of(1, 2, 3, 4, 5);

// Creating a parallel stream. Elements are processed on different threads instead of one.
numbers.parallelStream()
    .forEach(n -> System.out.println(n + " " + Thread.currentThread().getName()));

/*
Output (order may vary):
1 ForkJoinPool.commonPool-worker-1
2 ForkJoinPool.commonPool-worker-2
3 main
4 ForkJoinPool.commonPool-worker-3
5 ForkJoinPool.commonPool-worker-4
*/

2. When to Use Parallel Streams?

Parallel streams are useful when: Large datasets → Parallelism benefits large collections. Independent tasks → Operations should not depend on each other. CPU-intensive tasks → Parallel execution benefits complex computations. Multi-core processors → Takes advantage of multi-threading.

Example: Using Parallel Stream for Sum Calculation

List<Integer> numbers = List.of(1, 2, 3, 4, 5);

// Uses reduce() in parallel for summing elements.
int sum = numbers.parallelStream()
    .reduce(0, Integer::sum);

System.out.println(sum); // Output: 15

3. Performance Considerations for Parallel Execution

While parallel streams improve performance, they have overhead costs. Consider:

When Parallel Streams are Beneficial:

CPU-bound operations → Complex computations (e.g., matrix multiplication). ✔ Large collections → Overhead is negligible when processing thousands of elements. ✔ Stateless operations → Operations do not modify shared data.

When NOT to Use Parallel Streams:

Small datasets → Thread management overhead outweighs benefits. ✖ I/O-bound tasks → Parallel execution does not speed up database or network calls. ✖ Mutable shared state → Can cause race conditions and inconsistent results.

Example: Incorrect Use of Parallel Streams (Race Condition)

// Problem: ArrayList is not thread-safe, so concurrent modifications may cause data corruption.
List<Integer> numbers = List.of(1, 2, 3, 4, 5);

List<Integer> results = new ArrayList<>();

numbers.parallelStream().forEach(n -> results.add(n * 2));

System.out.println(results); // Output may be inconsistent (due to race conditions)
// Fix: Use ConcurrentLinkedQueue Instead
ConcurrentLinkedQueue<Integer> results = new ConcurrentLinkedQueue<>();

numbers.parallelStream().forEach(n -> results.add(n * 2));

System.out.println(results);

Primitive Streams (IntStream, LongStream, DoubleStream)

Java provides specialized primitive streams (IntStream, LongStream, DoubleStream) to efficiently process numerical data without the overhead of boxing/unboxing found in Stream<Integer>, Stream<Long>, and Stream<Double>.

1. Why Use Primitive Streams?

Using Stream<Integer> creates unnecessary autoboxing (conversion from int to Integer), which impacts performance.

Stream<Integer> numberStream = Stream.of(1, 2, 3, 4, 5);
int sum = numberStream.mapToInt(Integer::intValue).sum();  // Converts to IntStream

Instead of using Stream<Integer>, we can directly use IntStream. IntStream avoids Integer objects, reducing memory usage.

IntStream numberStream = IntStream.of(1, 2, 3, 4, 5);
int sum = numberStream.sum();  // More efficient

2. Creating and Processing Primitive Streams

2.1 Creating Primitive Streams

Primitive streams can be created from arrays, ranges, or generators.

(a) From Arrays

int[] numbers = {1, 2, 3, 4, 5};
IntStream streamFromArray = Arrays.stream(numbers);

(b) Using IntStream.of() and range()

IntStream stream = IntStream.of(1, 2, 3, 4, 5);  // From values
IntStream rangeStream = IntStream.range(1, 6);   // 1 to 5 (excludes 6)
IntStream rangeClosedStream = IntStream.rangeClosed(1, 5); // 1 to 5 (inclusive)

(c) Using generate() and iterate()

IntStream randomInts = IntStream.generate(() -> new Random().nextInt(100)).limit(5);
IntStream evenNumbers = IntStream.iterate(2, n -> n + 2).limit(5);

🔹 generate() generates infinite values (hence limit(5)). 🔹 iterate() applies a function (n -> n + 2) to generate values.

3. Specialized Operations for Numeric Streams

Primitive streams provide specialized numeric operations that are not available in normal Stream<T>.

3.1 Summing Elements (sum())

// More efficient than reduce(0, Integer::sum)
int total = IntStream.of(1, 2, 3, 4, 5).sum();
System.out.println(total); // Output: 15

3.2 Finding Min and Max (min(), max())

OptionalInt min = IntStream.of(3, 1, 4, 5, 2).min();
OptionalInt max = IntStream.of(3, 1, 4, 5, 2).max();
System.out.println(min.getAsInt() + ", " + max.getAsInt()); // Output: 1, 5

3.3 Finding the Average (average())

OptionalDouble avg = IntStream.of(1, 2, 3, 4, 5).average();
System.out.println(avg.getAsDouble()); // Output: 3.0

3.4 Collecting Statistics (summaryStatistics())

// Provides count, sum, min, max, and average in one call.
IntSummaryStatistics stats = IntStream.of(1, 2, 3, 4, 5).summaryStatistics();
System.out.println(stats);
/*
Output:
IntSummaryStatistics{count=5, sum=15, min=1, average=3.000000, max=5}
*/

3.5 Boxing Back to Stream<Integer> (boxed())

The boxed() method is used to convert a primitive stream (IntStream, LongStream, or DoubleStream) into a stream of wrapper objects (Stream<Integer>, Stream<Long>, Stream<Double>). Primitive streams (IntStream, LongStream, DoubleStream) provide specialized operations like sum(), min(), average(), and summaryStatistics(), but they cannot be used with collectors like Collectors.toList() because collectors expect a Stream of objects (Stream<T>).

// Converts IntStream → Stream<Integer>.
Stream<Integer> boxedStream = IntStream.range(1, 5).boxed();
boxedStream.forEach(System.out::println); // Output: 1 2 3 4

Working with Collectors (Collectors Utility Class)

The Collectors class in Java (java.util.stream.Collectors) provides a set of predefined collectors that can be used to accumulate elements from a stream into various data structures such as List, Set, Map, or even summary statistics. It is widely used with the collect() terminal operation.

1. Collecting to List, Set, and Map

Collecting Stream Elements into a List

The Collectors.toList() method collects elements into a List<>.

List<String> names = Stream.of("Alice", "Bob", "Charlie")
                           .collect(Collectors.toList());
System.out.println(names);
/*
Output:
[Alice, Bob, Charlie]
*/

Collecting Stream Elements into a Set

The Collectors.toSet() method collects elements into a Set<>, which removes duplicates and does not guarantee order.

Set<String> uniqueNames = Stream.of("Alice", "Bob", "Charlie", "Alice")
                                .collect(Collectors.toSet());
System.out.println(uniqueNames);
/*
Output (Order may vary):
[Alice, Bob, Charlie]
*/

Collecting Stream Elements into a Map

The Collectors.toMap() method collects elements into a Map<> with a key-value mapping function.

Map<Integer, String> nameMap = Stream.of("Alice", "Bob", "Charlie")
                                     .collect(Collectors.toMap(String::length, name -> name));
System.out.println(nameMap);
/*
Output (may vary):
{3=Bob, 5=Alice, 7=Charlie}
*/

Key = String length, Value = String itself If duplicate keys exist, it throws an exception unless a merge function is provided.

// Use a merge function to handle duplicate keys.
Map<Integer, String> nameMap = Stream.of("Alice", "Bob", "Charlie", "David")
    .collect(Collectors.toMap(String::length, name -> name, (existing, replacement) -> existing));
System.out.println(nameMap);
/*
Output (may vary):
{3=Bob, 5=Alice, 7=Charlie}
*/

2. Grouping and Partitioning Data

Grouping Elements using groupingBy()

The Collectors.groupingBy() method groups elements by a classifier function.

Collectors.groupingBy(Function<? super T, ? extends K> classifier)
Collectors.groupingBy(Function<? super T, ? extends K> classifier, Collector<? super T, A, D> downstream)
Collectors.groupingBy(Function<? super T, ? extends K> classifier, Supplier<Map<K, List<T>>> mapFactory, Collector<? super T, A, D> downstream)
// Basic Grouping
Map<Integer, List<String>> groupedByLength = Stream.of("Alice", "Bob", "Charlie")
    .collect(Collectors.groupingBy(String::length));
System.out.println(groupedByLength);
/*
Output:
{3=[Bob], 5=[Alice], 7=[Charlie]}
*/

// Grouping with Downstream Collector
List<String> words = Arrays.asList("apple", "bat", "banana", "cat", "dog", "elephant");
Map<Integer, Set<String>> groupedByLength = words.stream()
    .collect(Collectors.groupingBy(String::length, Collectors.toSet()));
// {3=[bat, cat, dog], 5=[apple], 6=[banana], 8=[elephant]}

// Grouping and Counting Elements
Map<Integer, Long> groupedByLengthCount = words.stream()
    .collect(Collectors.groupingBy(String::length, Collectors.counting()));
// {3=3, 5=1, 6=1, 8=1}    

// Grouping with Custom Map (LinkedHashMap) to maintain insertion order and counts occurrences
Map<Integer, LinkedHashMap<String, Long>> groupedWithCount = words.stream()
    .collect(Collectors.groupingBy(
        String::length, 
        LinkedHashMap::new, 
        Collectors.mapping(word -> word, Collectors.toMap(w -> w, w -> 1L, Long::sum, LinkedHashMap::new))
    ));
// {5={apple=1}, 3={bat=1, cat=1, dog=1}, 6={banana=1}, 8={elephant=1}}

Groups names based on length. Returns a Map<Integer, List<String>> where the key is the length and the value is a list of names.

Partitioning Elements using partitioningBy()

The Collectors.partitioningBy() method divides elements into two groups (true/false) based on a predicate. It is used when data needs to be divided into two categories.

Map<Boolean, List<Integer>> partitioned = Stream.of(10, 15, 20, 25, 30)
    .collect(Collectors.partitioningBy(n -> n % 2 == 0));
System.out.println(partitioned);
/*
Output:
{false=[15, 25], true=[10, 20, 30]}
*/

Two partitions:

  • true → Even numbers

  • false → Odd numbers

3. Summarizing Data with Collectors

Summing Elements using summingInt()

int total = Stream.of(5, 10, 15, 20)
                  .collect(Collectors.summingInt(n -> n));
System.out.println(total);
/*
Output:
50
*/

Calculating Average using averagingInt()

double avg = Stream.of(5, 10, 15, 20)
                   .collect(Collectors.averagingInt(n -> n));
System.out.println(avg);
/*
Output:
12.5
*/

Getting Summary Statistics using summarizingInt()

IntSummaryStatistics stats = Stream.of(5, 10, 15, 20)
    .collect(Collectors.summarizingInt(n -> n));
System.out.println(stats);
/*
Output:
IntSummaryStatistics{count=4, sum=50, min=5, average=12.500000, max=20}
*/

Last updated

Was this helpful?